

TABLE OF CONTENT

1. Table of Content

2. Introduction

1. Summary

2. About The Author

3. Before We Begin

3. Overview

1. The Four Parts of a Language

2. Meet Awesome: Our Toy Language

4. Lexer

1. Lex (Flex)

2. Ragel

3. Python Style Indentation For Awesome

4. Do It Yourself I

5. Parser

1. Bison (Yacc)

2. Lemon

3. ANTLR

4. PEGs

5. Operator Precedence

6. Connecting The Lexer and Parser in Awesome

7. Do It Yourself II

6. Runtime Model

1. Procedural

2. Class-based

3. Prototype-based

4. Functional

5. Our Awesome Runtime

6. Do It Yourself III

7. Interpreter

1. Do It Yourself IV

8. Compilation

1. Using LLVM from Ruby

2. Compiling Awesome to Machine Code

9. Virtual Machine

1. Byte-code

2. Types of VM

3. Prototyping a VM in Ruby

10. Going Further

1. Homoiconicity

2. Self-Hosting

3. What’s Missing?

11. Resources

1. Books & Papers

2. Events

3. Forums and Blogs

4. Interesting Languages

12. Solutions to Do It Yourself

1. Solutions to Do It Yourself I

2. Solutions to Do It Yourself II

3. Solutions to Do It Yourself III

4. Solutions to Do It Yourself IV

13. Appendix: Mio, a minimalist homoiconic language

1. Homoicowhat?

2. Messages all the way down

3. The Runtime

4. Implementing Mio in Mio

5. But it’s ugly

14. Farewell!

Published November 2011.

Cover background image © Asja Boros

Content of this book is © Marc-André Cournoyer. All right reserved. This eBook

copy is for a single user. You may not share it in any way unless you have written

permission of the author.

http://www.flickr.com/photos/asjaboros/2866293210/in/set-72157606575333100/

INTRODUCTION

When you don’t create things, you become defined by your tastes rather than

ability. Your tastes only narrow & exclude people. So create.

- Why the Lucky Stiff

Creating a programming language is the perfect mix of art and science. You’re

creating a way to express yourself, but at the same time applying computer science

principles to implement it. Since we aren’t the first ones to create a programming

language, some well established tools are around to ease most of the exercise.

Nevertheless, it can still be hard to create a fully functional language because it’s

impossible to predict all the ways in which someone will use it. That’s why making

your own language is such a great experience. You never know what someone else

might create with it!

I’ve written this book to help other developers discover the joy of creating a

programming language. Coding my first language was one of the most amazing

experiences in my programming career. I hope you’ll enjoy reading this book, but

mostly, I hope you’ll write your own programming language.

If you find an error or have a comment or suggestion while reading the following

pages, please send me an email at macournoyer@gmail.com.

SUMMARY

This book is divided into ten sections that will walk you through each step of

language-building. Each section will introduce a new concept and then apply its

principles to a language that we’ll build together throughout the book. All technical

chapters end with a Do It Yourself section that suggest some language-extending

exercises. You’ll find solutions to those at the end of this book.

mailto:macournoyer@gmail.com

Our language will be dynamic and very similar to Ruby and Python. All of the code

will be in Ruby, but I’ve put lots of attention to keep the code as simple as possible

so that you can understand what’s happening even if you don’t know Ruby.

The focus of this book is not on how to build a production-ready language. Instead,

it should serve as an introduction in building your first toy language.

ABOUT THE AUTHOR

I’m Marc-André Cournoyer, a coder from Montréal, Québec passionate about

programming languages and tequila, but usually not at the same time.

I coded tinyrb, the smallest Ruby Virtual Machine, Min, a toy language running on

the JVM, Thin, the high performance Ruby web server, and a bunch of other stuff.

You can find most of my projects on GitHub.

You can find me online, blogging or tweeting and offline, snowboarding and

learning guitar.

BEFORE WE BEGIN

You should have received a code.zip file with this book including all the code

samples. To run the examples you must have the following installed:

▪ Ruby 1.8.7 or 1.9.2

▪ Racc 1.4.6, install with: gem install racc -v=1.4.6 (optional, to

recompile the parser in the exercices).

Other versions might work, but the code was tested with those.

http://code.macournoyer.com/tinyrb/
http://github.com/macournoyer/min
http://code.macournoyer.com/thin/
http://github.com/macournoyer
http://macournoyer.com/blog
http://twitter.com/macournoyer
http://www.ruby-lang.org/en/downloads/

OVERVIEW

Although the way we design a language has evolved since its debuts, most of the

core principles haven’t changed. Contrary to Web Applications, where we’ve seen

a growing number of frameworks, languages are still built from a lexer, a parser

and a compiler. Some of the best books in this sphere have been written a long

time ago: Principles of Compiler Design was published in 1977 and Smalltalk-80:

The Language and its Implementation in 1983.

THE FOUR PARTS OF A LANGUAGE

Most dynamic languages are designed in four parts that work in sequence: the

lexer, the parser, the interpreter and the runtime. Each one transforms the input of

its predecessor until the code is run. Figure 1 shows an overview of this process. A

chapter of this book is dedicated to each part.

Figure 1

http://en.wikipedia.org/wiki/Principles_of_Compiler_Design
http://www.amazon.com/Smalltalk-80-Language-Implementation-Adele-Goldberg/dp/0201113716
http://www.amazon.com/Smalltalk-80-Language-Implementation-Adele-Goldberg/dp/0201113716

MEET AWESOME: OUR TOY LANGUAGE

The language we’ll be coding in this book is called Awesome, because it is!

It’s a mix of Ruby syntax and Python’s indentation:

1 class Awesome:

2 def name:

3 "I'm Awesome"

4

5 def awesomeness:

6 100

7

8 awesome = Awesome.new

9 print(awesome.name)

10 print(awesome.awesomeness)

A couple of rules for our language:

▪ As in Python, blocks of code are delimited by their indentation.

▪ Classes are declared with the class keyword.

▪ Methods can be defined anywhere using the def keyword.

▪ Identifiers starting with a capital letter are constants which are globally

accessible.

▪ Lower-case identifiers are local variables or method names.

▪ If a method takes no arguments, parenthesis can be skipped, much like in

Ruby.

▪ The last value evaluated in a method is its return value.

▪ Everything is an object.

Some parts will be incomplete, but the goal with a toy language is to educate,

experiment and set the foundation on which to build more.

LEXER

The lexer, or scanner, or tokenizer is the part of a language that converts the input,

the code you want to execute, into tokens the parser can understand.

Let’s say you have the following code:

1 print "I ate",

2 3,

3 pies

Once this code goes through the lexer, it will look something like this:

1 [IDENTIFIER print] [STRING "I ate"] [COMMA]

2 [NUMBER 3] [COMMA]

3 [IDENTIFIER pies]

What the lexer does is split the code and tag each part with the type of token it

contains. This makes it easier for the parser to operate since it doesn’t have to

bother with details such as parsing a floating point number or parsing a complex

string with escape sequences (\n, \t, etc.).

Lexers can be implemented using regular expressions, but more appropriate tools

exists.

LEX (FLEX)

Flex is a modern version of Lex (that was coded by Eric Schmidt, CEO of Google,

by the way) for generating C lexers. Along with Yacc, Lex is the most commonly

used lexer for parsing.

It has been ported to several target languages.

http://flex.sourceforge.net
http://en.wikipedia.org/wiki/Lex_programming_tool

▪ Rex for Ruby

▪ JFlex for Java

Lex and friends are not lexers per se. They are lexers compilers. You supply it a

grammar and it will output a lexer. Here’s what that grammar looks like:

1 BLANK [\t\n]+

2

3 %%

4

5 // Whitespace

6 {BLANK} /* ignore */

7

8 // Literals

9 [0-9]+ yylval = atoi(yytext); return T_NUMBER;

10

11 // Keywords

12 "end" yylval = yytext; return T_END;

13 // ...

On the left side a regular expression defines how the token is matched. On the

right side, the action to take. The value of the token is stored in yylval and the

type of token is returned.

More details in the Flex manual.

A Ruby equivalent, using the rexical gem (a port of Lex to Ruby), would be:

1 macro

2 BLANK [\ \t]+

3

4 rule

5 # Whitespace

6 {BLANK} # ignore

7

8 # Literals

9 [0-9]+ { [:NUMBER, text.to_i] }

http://github.com/tenderlove/rex/
http://jflex.de
http://flex.sourceforge.net/manual/

10

11 # Keywords

12 end { [:END, text] }

Rexical follows a similar grammar as Lex. Regular expression on the left and action

on the right. However, an array of two items is used to return the type and value of

the matched token.

Mode details on the rexical project page.

RAGEL

A powerful tool for creating a scanner is Ragel. It’s described as a State Machine

Compiler: lexers, like regular expressions, are state machines. Being very flexible,

they can handle grammars of varying complexities and output parser in several

languages.

Here’s what a Ragel grammar looks like:

1 %%{

2 machine lexer;

3

4 # Machine

5 number = [0-9]+;

6 whitespace = " ";

7 keyword = "end" | "def" | "class" | "if" | "else" | "true" | "false" | "nil";

8

9 # Actions

10 main := |*

11 whitespace; # ignore

12 number => { tokens << [:NUMBER, data[ts..te].to_i] };

13 keyword => { tokens << [data[ts...te].upcase.to_sym, data[ts...te]] };

14 *|;

15

16 class Lexer

17 def initialize

https://github.com/tenderlove/rexical
http://www.complang.org/ragel/

18 %% write data;

19 end

20

21 def run(data)

22 eof = data.size

23 line = 1

24 tokens = []

25 %% write init;

26 %% write exec;

27 tokens

28 end

29 end

30 }%%

More details in the Ragel manual (PDF).

Here are a few real-world examples of Ragel grammars used as language lexers:

▪ Min’s lexer (Java)

▪ Potion’s lexer (C)

PYTHON STYLE INDENTATION FOR AWESOME

If you intend to build a fully-functionning language, you should use one of the two

previous tools. Since Awesome is a simplistic language and we want to illustrate

the basic concepts of a scanner, we will build the lexer from scratch using regular

expressions.

To make things more interesting, we’ll use indentation to delimit blocks in our toy

language, as in Python. All of indentation magic takes place within the lexer.

Parsing blocks of code delimited with { ... } is no different from parsing

indentation when you know how to do it.

Tokenizing the following Python code:

http://www.complang.org/ragel/ragel-guide-6.5.pdf
http://github.com/macournoyer/min/blob/master/src/min/lang/Scanner.rl
http://github.com/whymirror/potion/blob/fae2907ce1f4136da006029474e1cf761776e99b/core/pn-scan.rl

1 if tasty == True:

2 print "Delicious!"

will yield these tokens:

1 [IDENTIFIER if] [IDENTIFIER tasty] [EQUAL] [IDENTIFIER True]

2 [INDENT] [IDENTIFIER print] [STRING "Delicious!"]

3 [DEDENT]

The block is wrapped in INDENT and DEDENT tokens instead of { and }.

The indentation-parsing algorithm is simple. You need to track two things: the

current indentation level and the stack of indentation levels. When you encounter a

line break followed by spaces, you update the indentation level. Here’s our lexer

for the Awesome language:

lexer.rb1 class Lexer

2 KEYWORDS = ["def", "class", "if", "true", "false", "nil"]

3

4 def tokenize(code)

5 # Cleanup code by remove extra line breaks

6 code.chomp!

7

8 # Current character position we're parsing

9 i = 0

10

11 # Collection of all parsed tokens in the form [:TOKEN_TYPE, value]

12 tokens = []

13

14 # Current indent level is the number of spaces in the last indent.

15 current_indent = 0

16 # We keep track of the indentation levels we are in so that when we dedent, we can

17 # check if we're on the correct level.

18 indent_stack = []

19

20 # This is how to implement a very simple scanner.

21 # Scan one character at the time until you find something to parse.

22 while i < code.size

23 chunk = code[i..-1]

24

25 # Matching standard tokens.

26 #

27 # Matching if, print, method names, etc.

28 if identifier = chunk[/\A([a-z]\w*)/, 1]

29 # Keywords are special identifiers tagged with their own name, 'if' will result

30 # in an [:IF, "if"] token

31 if KEYWORDS.include?(identifier)

32 tokens << [identifier.upcase.to_sym, identifier]

33 # Non-keyword identifiers include method and variable names.

34 else

35 tokens << [:IDENTIFIER, identifier]

36 end

37 # skip what we just parsed

38 i += identifier.size

39

40 # Matching class names and constants starting with a capital letter.

41 elsif constant = chunk[/\A([A-Z]\w*)/, 1]

42 tokens << [:CONSTANT, constant]

43 i += constant.size

44

45 elsif number = chunk[/\A([0-9]+)/, 1]

46 tokens << [:NUMBER, number.to_i]

47 i += number.size

48

49 elsif string = chunk[/\A"(.*?)"/, 1]

50 tokens << [:STRING, string]

51 i += string.size + 2

52

53 # Here's the indentation magic!

54 #

55 # We have to take care of 3 cases:

56 #

57 # if true: # 1) the block is created

58 # line 1

59 # line 2 # 2) new line inside a block

60 # continue # 3) dedent

61 #

62 # This elsif takes care of the first case. The number of spaces will determine

63 # the indent level.

64 elsif indent = chunk[/\A\:\n(+)/m, 1] # Matches ": <newline> <spaces>"

65 # When we create a new block we expect the indent level to go up.

66 if indent.size <= current_indent

67 raise "Bad indent level, got #{indent.size} indents, " +

68 "expected > #{current_indent}"

69 end

70 # Adjust the current indentation level.

71 current_indent = indent.size

72 indent_stack.push(current_indent)

73 tokens << [:INDENT, indent.size]

74 i += indent.size + 2

75

76 # This elsif takes care of the two last cases:

77 # Case 2: We stay in the same block if the indent level (number of spaces) is the

78 # same as current_indent.

79 # Case 3: Close the current block, if indent level is lower than current_indent.

80 elsif indent = chunk[/\A\n(*)/m, 1] # Matches "<newline> <spaces>"

81 if indent.size == current_indent # Case 2

82 # Nothing to do, we're still in the same block

83 tokens << [:NEWLINE, "\n"]

84 elsif indent.size < current_indent # Case 3

85 while indent.size < current_indent

86 indent_stack.pop

87 current_indent = indent_stack.first || 0

88 tokens << [:DEDENT, indent.size]

89 end

90 tokens << [:NEWLINE, "\n"]

91 else # indent.size > current_indent, error!

92 # Cannot increase indent level without using ":", so this is an error.

93 raise "Missing ':'"

94 end

95 i += indent.size + 1

96

97 # Match long operators such as ||, &&, ==, !=, <= and >=.

98 # One character long operators are matched by the catch all `else` at the bottom.

99 elsif operator = chunk[/\A(\|\||&&|==|!=|<=|>=)/, 1]

100 tokens << [operator, operator]

101 i += operator.size

102

103 # Ignore whitespace

104 elsif chunk.match(/\A /)

105 i += 1

106

107 # Catch all single characters

108 # We treat all other single characters as a token. Eg.: () , . ! + - <

109 else

110 value = chunk[0,1]

111 tokens << [value, value]

112 i += 1

113

114 end

115

116 end

117

118 # Close all open blocks

119 while indent = indent_stack.pop

120 tokens << [:DEDENT, indent_stack.first || 0]

121 end

122

123 tokens

124 end

125 end

You can test the lexer yourself by running the test file included with the book. Run

ruby -Itest test/lexer_test.rb from the code directory and it should

output 0 failures, 0 errors. Here’s an excerpt from that test file.

test/lexer_test.rb1 code = <<-CODE

2 if 1:

3 print "..."

4 if false:

5 pass

6 print "done!"

7 print "The End"

8 CODE

9 tokens = [

10 [:IF, "if"], [:NUMBER, 1],

11 [:INDENT, 2],

12 [:IDENTIFIER, "print"], [:STRING, "..."], [:NEWLINE, "\n"],

13 [:IF, "if"], [:FALSE, "false"],

14 [:INDENT, 4],

15 [:IDENTIFIER, "pass"],

16 [:DEDENT, 2], [:NEWLINE, "\n"],

17 [:IDENTIFIER, "print"],

18 [:STRING, "done!"],

19 [:DEDENT, 0], [:NEWLINE, "\n"],

20 [:IDENTIFIER, "print"], [:STRING, "The End"]

21]

22 assert_equal tokens, Lexer.new.tokenize(code)

Some parsers take care of both lexing and parsing in their grammar. We’ll see more

about those in the next section.

DO IT YOURSELF I

a. Modify the lexer to parse: while condition: ... control structures.

b. Modify the lexer to delimit blocks with { ... } instead of indentation.

Solutions to Do It Yourself I.

PARSER

By themselves, the tokens output by the lexer are just building blocks. The parser

contextualizes them by organizing them in a structure. The lexer produces an array

of tokens; the parser produces a tree of nodes.

Lets take those tokens from previous section:

1 [IDENTIFIER print] [STRING "I ate"] [COMMA]

2 [NUMBER 3] [COMMA]

3 [IDENTIFIER pies]

The most common parser output is an Abstract Syntax Tree, or AST. It’s a tree of

nodes that represents what the code means to the language. The previous lexer

tokens will produce the following:

1 [<Call name=print,

2 arguments=[<String value="I ate">,

3 <Number value=3>,

4 <Local name=pies>]

5 >]

Or as a visual tree:

Figure 2

The parser found that print was a method call and the following tokens are the

arguments.

Parser generators are commonly used to accomplish the otherwise tedious task of

building a parser. Much like the English language, a programming language needs

a grammar to define its rules. The parser generator will convert this grammar into a

parser that will compile lexer tokens into AST nodes.

BISON (YACC)

Bison is a modern version of Yacc, the most widely used parser. Yacc stands for Yet

Another Compiler Compiler, because it compiles the grammar to a compiler of

tokens. It’s used in several mainstream languages, like Ruby. Most often used with

Lex, it has been ported to several target languages.

▪ Racc for Ruby

▪ Ply for Python

▪ JavaCC for Java

Like Lex, from the previous chapter, Yacc compiles a grammar into a parser. Here’s

how a Yacc grammar rule is defined:

1 Call: /* Name of the rule */

2 Expression '.' IDENTIFIER { $$ = CallNode_new($1, $3, NULL); }

3 | Expression '.' IDENTIFIER '(' ArgList ')' { $$ = CallNode_new($1, $3, $5); }

4 /* $1 $2 $3 $4 $5 $6 <= values from the rule are stored in

5 these variables. */

6 ;

On the left is defined how the rule can be matched using tokens and other rules.

On the right side, between brackets is the action to execute when the rule matches.

http://i.loveruby.net/en/projects/racc/
http://www.dabeaz.com/ply/
http://mindprod.com/jgloss/javacc.html

In that block, we can reference tokens being matched using $1, $2, etc. Finally, we

store the result in $$.

LEMON

Lemon is quite similar to Yacc, with a few differences. From its website:

▪ Using a different grammar syntax which is less prone to programming

errors.

▪ The parser generated by Lemon is both re-entrant and thread-safe.

▪ Lemon includes the concept of a non-terminal destructor, which

makes it much easier to write a parser that does not leak memory.

For more information, refer to the the manual or check real examples inside Potion.

ANTLR

ANTLR is another parsing tool. This one let’s you declare lexing and parsing rules

in the same grammar. It has been ported to several target languages.

PEGS

Parsing Expression Grammars, or PEGs, are very powerful at parsing complex

languages. I’ve used a PEG generated from peg/leg in tinyrb to parse Ruby’s

infamous syntax with encouraging results (tinyrb’s grammar).

Treetop is an interesting Ruby tool for creating PEG.

OPERATOR PRECEDENCE

One of the common pitfalls of language parsing is operator precedence. Parsing x

+ y * z should not produce the same result as (x + y) * z, same for all other

http://www.hwaci.com/sw/lemon/
http://www.hwaci.com/sw/lemon/lemon.html
https://github.com/whymirror/potion/blob/fae2907ce1f4136da006029474e1cf761776e99b/core/pn-gram.y
http://www.antlr.org/
http://www.antlr.org/wiki/display/ANTLR3/Code+Generation+Targets
http://piumarta.com/software/peg/
http://github.com/macournoyer/tinyrb/blob/master/vm/grammar.leg
http://treetop.rubyforge.org/

operators. Each language has an operator precedence table, often based on

mathematics order of operations. Several ways to handle this exist. Yacc-based

parsers implement the Shunting Yard algorithm in which you give a precedence

level to each kind of operator. Operators are declared in Bison and Yacc with

%left and %right macros. Read more in Bison’s manual.

Here’s the operator precedence table for our language, based on the C language

operator precedence:

1 left '.'

2 right '!'

3 left '*' '/'

4 left '+' '-'

5 left '>' '>=' '<' '<='

6 left '==' '!='

7 left '&&'

8 left '||'

9 right '='

10 left ','

The higher the precedence (top is higher), the sooner the operator will be parsed. If

the line a + b * c is being parsed, the part b * c will be parsed first since *

has higher precedence than +. Now, if several operators having the same

precedence are competing to be parsed all the once, the conflict is resolved using

associativity, declared with the left and right keyword before the token. For

example, with the expression a = b = c. Since = has right-to-left associativity, it

will start parsing from the right, b = c. Resulting in a = (b = c).

For other types of parsers (ANTLR and PEG) a simpler but less efficient alternative

can be used. Simply declaring the grammar rules in the right order will produce the

desired result:

http://en.wikipedia.org/wiki/Shunting_yard_algorithm
http://dinosaur.compilertools.net/bison/bison_6.html#SEC51
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence

1 expression: equality

2 equality: additive (('==' | '!=') additive)*

3 additive: multiplicative (('+' | '-') multiplicative)*

4 multiplicative: primary (('*' | '/') primary)*

5 primary: '(' expression ')' | NUMBER | VARIABLE | '-' primary

The parser will try to match rules recursively, starting from expression and

finding its way to primary. Since multiplicative is the last rule called in the

parsing process, it will have greater precedence.

CONNECTING THE LEXER AND PARSER IN
AWESOME

For our Awesome parser we’ll use Racc, the Ruby version of Yacc. It’s much harder

to build a parser from scratch than it is to create a lexer. However, most languages

end up writing their own parser because the result is faster and provides better error

reporting.

The input file you supply to Racc contains the grammar of your language and is

very similar to a Yacc grammar.

grammar.y1 class Parser

2

3 # Declare tokens produced by the lexer

4 token IF ELSE

5 token DEF

6 token CLASS

7 token NEWLINE

8 token NUMBER

9 token STRING

10 token TRUE FALSE NIL

11 token IDENTIFIER

12 token CONSTANT

13 token INDENT DEDENT

14

15 # Precedence table

16 # Based on http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence

17 prechigh

18 left '.'

19 right '!'

20 left '*' '/'

21 left '+' '-'

22 left '>' '>=' '<' '<='

23 left '==' '!='

24 left '&&'

25 left '||'

26 right '='

27 left ','

28 preclow

29

30 rule

31 # All rules are declared in this format:

32 #

33 # RuleName:

34 # OtherRule TOKEN AnotherRule { code to run when this matches }

35 # | OtherRule { ... }

36 # ;

37 #

38 # In the code section (inside the {...} on the right):

39 # - Assign to "result" the value returned by the rule.

40 # - Use val[index of expression] to reference expressions on the left.

41

42

43 # All parsing will end in this rule, being the trunk of the AST.

44 Root:

45 /* nothing */ { result = Nodes.new([]) }

46 | Expressions { result = val[0] }

47 ;

48

49 # Any list of expressions, class or method body, seperated by line breaks.

50 Expressions:

51 Expression { result = Nodes.new(val) }

52 | Expressions Terminator Expression { result = val[0] << val[2] }

53 # To ignore trailing line breaks

54 | Expressions Terminator { result = val[0] }

55 | Terminator { result = Nodes.new([]) }

56 ;

57

58 # All types of expressions in our language

59 Expression:

60 Literal

61 | Call

62 | Operator

63 | Constant

64 | Assign

65 | Def

66 | Class

67 | If

68 | '(' Expression ')' { result = val[1] }

69 ;

70

71 # All tokens that can terminate an expression

72 Terminator:

73 NEWLINE

74 | ";"

75 ;

76

77 # All hard-coded values

78 Literal:

79 NUMBER { result = NumberNode.new(val[0]) }

80 | STRING { result = StringNode.new(val[0]) }

81 | TRUE { result = TrueNode.new }

82 | FALSE { result = FalseNode.new }

83 | NIL { result = NilNode.new }

84 ;

85

86 # A method call

87 Call:

88 # method

89 IDENTIFIER { result = CallNode.new(nil, val[0], []) }

90 # method(arguments)

91 | IDENTIFIER "(" ArgList ")" { result = CallNode.new(nil, val[0], val[2]) }

92 # receiver.method

93 | Expression "." IDENTIFIER { result = CallNode.new(val[0], val[2], []) }

94 # receiver.method(arguments)

95 | Expression "."

96 IDENTIFIER "(" ArgList ")" { result = CallNode.new(val[0], val[2], val[4]) }

97 ;

98

99 ArgList:

100 /* nothing */ { result = [] }

101 | Expression { result = val }

102 | ArgList "," Expression { result = val[0] << val[2] }

103 ;

104

105 Operator:

106 # Binary operators

107 Expression '||' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

108 | Expression '&&' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

109 | Expression '==' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

110 | Expression '!=' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

111 | Expression '>' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

112 | Expression '>=' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

113 | Expression '<' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

114 | Expression '<=' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

115 | Expression '+' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

116 | Expression '-' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

117 | Expression '*' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

118 | Expression '/' Expression { result = CallNode.new(val[0], val[1], [val[2]]) }

119 ;

120

121 Constant:

122 CONSTANT { result = GetConstantNode.new(val[0]) }

123 ;

124

125 # Assignment to a variable or constant

126 Assign:

127 IDENTIFIER "=" Expression { result = SetLocalNode.new(val[0], val[2]) }

128 | CONSTANT "=" Expression { result = SetConstantNode.new(val[0], val[2]) }

129 ;

130

131 # Method definition

132 Def:

133 DEF IDENTIFIER Block { result = DefNode.new(val[1], [], val[2]) }

134 | DEF IDENTIFIER

135 "(" ParamList ")" Block { result = DefNode.new(val[1], val[3], val[5]) }

136 ;

137

138 ParamList:

139 /* nothing */ { result = [] }

140 | IDENTIFIER { result = val }

141 | ParamList "," IDENTIFIER { result = val[0] << val[2] }

142 ;

143

144 # Class definition

145 Class:

146 CLASS CONSTANT Block { result = ClassNode.new(val[1], val[2]) }

147 ;

148

149 # if block

150 If:

151 IF Expression Block { result = IfNode.new(val[1], val[2]) }

152 ;

153

154 # A block of indented code. You see here that all the hard work was done by the

155 # lexer.

156 Block:

157 INDENT Expressions DEDENT { result = val[1] }

158 # If you don't like indentation you could replace the previous rule with the

159 # following one to separate blocks w/ curly brackets. You'll also need to remove the

160 # indentation magic section in the lexer.

161 # "{" Expressions "}" { replace = val[1] }

162 ;

163 end

164

165 ---- header

166 require "lexer"

167 require "nodes"

168

169 ---- inner

170 # This code will be put as-is in the Parser class.

171 def parse(code, show_tokens=false)

172 @tokens = Lexer.new.tokenize(code) # Tokenize the code using our lexer

173 puts @tokens.inspect if show_tokens

174 do_parse # Kickoff the parsing process

175 end

176

177 def next_token

178 @tokens.shift

179 end

We then generate the parser with: racc -o parser.rb grammar.y. This will

create a Parser class that we can use to parse our code. Run ruby -Itest

test/parser_test.rb from the code directory to test the parser. Here’s an

excerpt from this file.

test/parser_test.rb1 code = <<-CODE

2 def method(a, b):

3 true

4 CODE

5

6 nodes = Nodes.new([

7 DefNode.new("method", ["a", "b"],

8 Nodes.new([TrueNode.new])

9)

10])

11

12 assert_equal nodes, Parser.new.parse(code)

Parsing code will return a tree of nodes. The root node will always be of type

Nodes which contains children nodes.

DO IT YOURSELF I I

a. Add a rule in the grammar to parse while blocks.

b. Add a grammar rule to handle the ! unary operators, eg.: !x. Making the

following test pass (test_unary_operator):

Solutions to Do It Yourself II.

RUNTIME MODEL

The runtime model of a language is how we represent its objects, its methods, its

types, its structure in memory. If the parser determines how you talk to the

language, the runtime defines how the language behaves. Two languages could

share the same parser but have different runtimes and be very different.

When designing your runtime, there are three factors you will want to consider:

▪ Speed: most of the speed will be due to the efficiency of the runtime.

▪ Flexibility: the more you allow the user to modify the language, the more

powerful it is.

▪ Memory footprint: of course, all of this while using as little memory as

possible.

As you might have noticed, these three constraints are mutually conflictual.

Designing a language is always a game of give-and-take.

With those considerations in mind, there are several ways you can model your

runtime.

PROCEDURAL

One of the simplest runtime models, like C and PHP (before version 4). Everything

is centered around methods (procedures). There aren’t any objects and all methods

often share the same namespace. It gets messy pretty quickly!

CLASS -BASED

The class-based model is the most popular at the moment. Think of Java, Python,

Ruby, etc. It might be the easiest model to understand for the users of your

language.

PROTOTYPE -BASED

Except for Javascript, no Prototype-based languages have reached widespread

popularity yet. This model is the easiest one to implement and also the most

flexible because everything is a clone of an object.

Ian Piumarta describes how to design an Open, Extensible Object Model that

allows the language’s users to modify its behavior at runtime.

Look at the appendix at the end of this book for a sample prototype-based

language: Appendix: Mio, a minimalist homoiconic language.

FUNCTIONAL

The functional model, used by Lisp and other languages, treats computation as the

evaluation of mathematical functions and avoids state and mutable data. This

model has its roots in Lambda Calculus.

OUR AWESOME RUNTIME

Since most of us are familiar with Class-based runtimes, I decided to use that for

our Awesome language. The following code defines how objects, methods and

classes are stored and how they interact together.

The AwesomeObject class is the central object of our runtime. Since everything is

an object in our language, everything we will put in the runtime needs to be an

http://piumarta.com/software/cola/objmodel2.pdf

object, thus an instance of this class. AwesomeObjects have a class and can hold

a ruby value. This will allow us to store data such as a string or a number in an

object to keep track of its Ruby representation.

runtime/object.rb1 # Represents an Awesome object instance in the Ruby world.

2 class AwesomeObject

3 attr_accessor :runtime_class, :ruby_value

4

5 # Each object have a class (named runtime_class to prevent errors with Ruby's class

6 # method). Optionaly an object can hold a Ruby value (eg.: numbers and strings).

7 def initialize(runtime_class, ruby_value=self)

8 @runtime_class = runtime_class

9 @ruby_value = ruby_value

10 end

11

12 # Call a method on the object.

13 def call(method, arguments=[])

14 # Like a typical Class-based runtime model, we store methods in the class of the

15 # object.

16 @runtime_class.lookup(method).call(self, arguments)

17 end

18 end

Remember that in Awesome, everything is an object. Even classes are instances of

the Class class. AwesomeClasses hold the methods and can be instantiated via

their new method.

runtime/class.rb

1 # Represents a Awesome class in the Ruby world. Classes are objects in Awesome so they

2 # inherit from AwesomeObject.

3 class AwesomeClass < AwesomeObject

4 attr_reader :runtime_methods

5

6 # Creates a new class. Number is an instance of Class for example.

7 def initialize

8 @runtime_methods = {}

9

10 # Check if we're bootstrapping (launching the runtime). During this process the

11 # runtime is not fully initialized and core classes do not yet exists, so we defer

12 # using those once the language is bootstrapped.

13 # This solves the chicken-or-the-egg problem with the Class class. We can

14 # initialize Class then set Class.class = Class.

15 if defined?(Runtime)

16 runtime_class = Runtime["Class"]

17 else

18 runtime_class = nil

19 end

20

21 super(runtime_class)

22 end

23

24 # Lookup a method

25 def lookup(method_name)

26 method = @runtime_methods[method_name]

27 unless method

28 raise "Method not found: #{method_name}"

29 end

30 method

31 end

32

33 # Create a new instance of this class

34 def new

35 AwesomeObject.new(self)

36 end

37

38 # Create an instance of this Awesome class that holds a Ruby value. Like a String,

39 # Number or true.

40 def new_with_value(value)

41 AwesomeObject.new(self, value)

42 end

43 end

And here’s the method object which will store methods defined from within our

runtime.

runtime/method.rb1 # Represents a method defined in the runtime.

2 class AwesomeMethod

3 def initialize(params, body)

4 @params = params

5 @body = body

6 end

7

8 def call(receiver, arguments)

9 # Create a context of evaluation in which the method will execute.

10 context = Context.new(receiver)

11

12 # Assign arguments to local variables

13 @params.each_with_index do |param, index|

14 context.locals[param] = arguments[index]

15 end

16

17 @body.eval(context)

18 end

19 end

Notice that we use the call method for evaluating a method. That will allow us to

define runtime methods from Ruby using Procs. Here’s why:

1 p = proc do |arg1, arg2|

2 # ...

3 end

4 p.call(1, 2) # execute the block of code passed to proc (everything between do ... end)

Procs can be executed via their call method. We’ll see how this is used to

defined runtime methods from Ruby in the bootstrapping section of the runtime.

Before we bootstrap our runtime, there is one missing object we need to define and

that is the context of evaluation. The Context object encapsulates the

environment of evaluation of a specific block of code. It will keep track of the

following:

▪ Local variables.

▪ The current value of self, the object on which methods with no receivers

are called, eg.: print is like self.print.

▪ The current class, the class on which methods are defined with the def

keyword.

This is also where our constants (ie. classes) will be stored.

runtime/context.rb1 # The evaluation context.

2 class Context

3 attr_reader :locals, :current_self, :current_class

4

5 # We store constants as class variable (class variables start with @@ and instance

6 # variables start with @ in Ruby) since they are globally accessible. If you want to

7 # implement namespacing of constants, you could store it in the instance of this

8 # class.

9 @@constants = {}

10

11 def initialize(current_self, current_class=current_self.runtime_class)

12 @locals = {}

13 @current_self = current_self

14 @current_class = current_class

15 end

16

17 # Shortcuts to access constants, Runtime[...] instead of Runtime.constants[...]

18 def [](name)

19 @@constants[name]

20 end

21 def []=(name, value)

22 @@constants[name] = value

23 end

24 end

Finally, we bootstrap the runtime. At first, no objects exist in the runtime. Before

we can execute our first expression, we need to populate that runtime with a few

objects: Class, Object, true, false, nil and a few core methods.

runtime/bootstrap.rb

1 # Bootstrap the runtime. This is where we assemble all the classes and objects together

2 # to form the runtime.

3 # What's happening in the runtime:

4 awesome_class = AwesomeClass.new # Class

5 awesome_class.runtime_class = awesome_class # Class.class = Class

6 object_class = AwesomeClass.new # Object = Class.new

7 object_class.runtime_class = awesome_class # Object.class = Class

8

9 # Create the Runtime object (the root context) on which all code will start its

10 # evaluation.

11 Runtime = Context.new(object_class.new)

12

13 Runtime["Class"] = awesome_class

14 Runtime["Object"] = object_class

15 Runtime["Number"] = AwesomeClass.new

16 Runtime["String"] = AwesomeClass.new

17

18 # Everything is an object in our language, even true, false and nil. So they need

19 # to have a class too.

20 Runtime["TrueClass"] = AwesomeClass.new

21 Runtime["FalseClass"] = AwesomeClass.new

22 Runtime["NilClass"] = AwesomeClass.new

23

24 Runtime["true"] = Runtime["TrueClass"].new_with_value(true)

25 Runtime["false"] = Runtime["FalseClass"].new_with_value(false)

26 Runtime["nil"] = Runtime["NilClass"].new_with_value(nil)

27

28 # Add a few core methods to the runtime.

29

30 # Add the `new` method to classes, used to instantiate a class:

31 # eg.: Object.new, Number.new, String.new, etc.

32 Runtime["Class"].runtime_methods["new"] = proc do |receiver, arguments|

33 receiver.new

34 end

35

36 # Print an object to the console.

37 # eg.: print("hi there!")

38 Runtime["Object"].runtime_methods["print"] = proc do |receiver, arguments|

39 puts arguments.first.ruby_value

40 Runtime["nil"]

41 end

Now that we got all the pieces together we can call methods and create objects

inside our runtime.

test/runtime_test.rb1 # Mimic Object.new in the language

2 object = Runtime["Object"].call("new")

3

4 assert_equal Runtime["Object"], object.runtime_class # assert object is an Object

Can you feel the language coming alive? We’ll learn how to map that runtime to

the nodes we created from our parser in the next section.

DO IT YOURSELF I I I

a. Implement inheritance by adding a superclass to each Awesome class.

b. Add the method to handle x + 2.

Solutions to Do It Yourself III.

INTERPRETER

The interpreter is the module that evaluates the code. It reads the AST produced by

the parser and executes each action associated with the nodes, modifying the

runtime.

Figure 3 recapitulates the path of a string in our language.

Figure 3

The lexer creates the token, the parser takes those tokens and converts it into

nodes. Finally, the interpreter evaluates the nodes.

A common approach to execute an AST is to implement a Visitor class that visits all

the nodes one by one, running the appropriate code. This make things even more

modular and eases the optimization efforts on the AST. But for the purpose of this

book, we’ll keep things simple and let each node handle its evaluation.

Remember the nodes we created in the parser: StringNode for a string,

ClassNode for a class definition? Here we’re reopening those classes and adding

a new method to each one: eval. This method will be responsible for interpreting

that particular node.

http://en.wikipedia.org/wiki/Visitor_pattern

interpreter.rb1 require "parser"

2 require "runtime"

3

4 class Interpreter

5 def initialize

6 @parser = Parser.new

7 end

8

9 def eval(code)

10 @parser.parse(code).eval(Runtime)

11 end

12 end

13

14 class Nodes

15 # This method is the "interpreter" part of our language. All nodes know how to eval

16 # itself and returns the result of its evaluation by implementing the "eval" method.

17 # The "context" variable is the environment in which the node is evaluated (local

18 # variables, current class, etc.).

19 def eval(context)

20 return_value = nil

21 nodes.each do |node|

22 return_value = node.eval(context)

23 end

24 # The last value evaluated in a method is the return value. Or nil if none.

25 return_value || Runtime["nil"]

26 end

27 end

28

29 class NumberNode

30 def eval(context)

31 # Here we access the Runtime, which we'll see in the next section, to create a new

32 # instance of the Number class.

33 Runtime["Number"].new_with_value(value)

34 end

35 end

36

37 class StringNode

38 def eval(context)

39 Runtime["String"].new_with_value(value)

40 end

41 end

42

43 class TrueNode

44 def eval(context)

45 Runtime["true"]

46 end

47 end

48

49 class FalseNode

50 def eval(context)

51 Runtime["false"]

52 end

53 end

54

55 class NilNode

56 def eval(context)

57 Runtime["nil"]

58 end

59 end

60

61 class CallNode

62 def eval(context)

63 # If there's no receiver and the method name is the name of a local variable, then

64 # it's a local variable access. This trick allows us to skip the () when calling a

65 # method.

66 if receiver.nil? && context.locals[method] && arguments.empty?

67 context.locals[method]

68

69 # Method call

70 else

71 if receiver

72 value = receiver.eval(context)

73 else

74 # In case there's no receiver we default to self, calling "print" is like

75 # "self.print".

76 value = context.current_self

77 end

78

79 eval_arguments = arguments.map { |arg| arg.eval(context) }

80 value.call(method, eval_arguments)

81 end

82 end

83 end

84

85 class GetConstantNode

86 def eval(context)

87 context[name]

88 end

89 end

90

91 class SetConstantNode

92 def eval(context)

93 context[name] = value.eval(context)

94 end

95 end

96

97 class SetLocalNode

98 def eval(context)

99 context.locals[name] = value.eval(context)

100 end

101 end

102

103 class DefNode

104 def eval(context)

105 # Defining a method is adding a method to the current class.

106 method = AwesomeMethod.new(params, body)

107 context.current_class.runtime_methods[name] = method

108 end

109 end

110

111 class ClassNode

112 def eval(context)

113 # Try to locate the class. Allows reopening classes to add methods.

114 awesome_class = context[name]

115

116 unless awesome_class # Class doesn't exist yet

117 awesome_class = AwesomeClass.new

118 # Register the class as a constant in the runtime.

119 context[name] = awesome_class

120 end

121

122 # Evaluate the body of the class in its context. Providing a custom context allows

123 # to control where methods are added when defined with the def keyword. In this

124 # case, we add them to the newly created class.

125 class_context = Context.new(awesome_class, awesome_class)

126

127 body.eval(class_context)

128

129 awesome_class

130 end

131 end

132

133 class IfNode

134 def eval(context)

135 # We turn the condition node into a Ruby value to use Ruby's "if" control

136 # structure.

137 if condition.eval(context).ruby_value

138 body.eval(context)

139 end

140 end

141 end

The interpreter part (the eval method) is the connector between the parser and the

runtime of our language. Once we call eval on the root node, all children nodes

are evaluated recursively. This is why we call the output of the parser an AST, for

Abstract Syntax Tree. It is a tree of nodes. And evaluating the top level node of that

tree will have the cascading effect of evaluating each of its children.

Let’s run our first full program!

test/interpreter_test.rb1 code = <<-CODE

2 class Awesome:

3 def does_it_work:

4 "yeah!"

5

6 awesome_object = Awesome.new

7 if awesome_object:

8 print(awesome_object.does_it_work)

9 CODE

10

11 assert_prints("yeah!\n") { Interpreter.new.eval(code) }

To complete our language we can create a script to run a file or an REPL (for read-

eval-print-loop), or interactive interpreter.

awesome1 #!/usr/bin/env ruby

2 # The Awesome language!

3 #

4 # usage:

5 # ./awesome example.awm # to eval a file

6 # ./awesome # to start the REPL

7 #

8 # on Windows run with: ruby awesome [options]

9

10 $:.unshift "." # Fix for Ruby 1.9

11 require "interpreter"

12 require "readline"

13

14 interpreter = Interpreter.new

15

16 # If a file is given we eval it.

17 if file = ARGV.first

18 interpreter.eval File.read(file)

19

20 # Start the REPL, read-eval-print-loop, or interactive interpreter

21 else

22 puts "Awesome REPL, CTRL+C to quit"

23 loop do

24 line = Readline::readline(">> ")

25 Readline::HISTORY.push(line)

26 value = interpreter.eval(line)

27 puts "=> #{value.ruby_value.inspect}"

28 end

29

30 end

Run the interactive interpreter by running ./awesome and type a line of Awesome

code, eg.: print("It works!"). Here’s a sample Awesome session:

1 Awesome REPL, CTRL+C to quit

2 >> m = "This is Awesome!"

3 => "This is Awesome!"

4 >> print(m)

5 This is Awesome!

6 => nil

Also, try running a file: ./awesome example.awm.

DO IT YOURSELF IV

a. Implement the WhileNode eval method.

Solutions to Do It Yourself IV.

COMPILATION

Dynamic languages like Ruby and Python have many advantages, like

development speed and flexibility. But sometimes, compiling a language to a more

efficient format might be more appropriate. When you write C code, you compile it

to machine code. Java is compiled to a specific byte-code that you can run on the

Java Virtual Machine (JVM).

These days, most dynamic languages also compile source code to machine code or

byte-code on the fly, this is called Just In Time (JIT) compilation. It yields faster

execution because executing code by walking an AST of nodes (like in Awesome)

is less efficient then running machine code or byte-code. The reason why byte-

code execution is faster is because it’s closer to machine code then an AST is.

Bringing your execution model closer to the machine will always produce faster

results.

If you want to compile your language you have multiple choices, you can:

▪ compile to your own byte-code format and create a Virtual Machine to run

it,

▪ compile it to JVM byte-code using tools like ASM,

▪ write your own machine code compiler,

▪ use an existing compiler framework like LLVM.

Compiling to a custom byte-code format is the most popular option for dynamic

languages. Python and new Ruby implementations are going this way. But, this

only makes sense if you’re coding in a low level language like C. Because Virtual

Machines are very simple (it’s basically a loop and switch-case) you need total

control over the structure of your program in memory to make it as fast a possible.

If you want more details on Virtual Machines, jump to the next chapter.

http://asm.ow2.org/
http://llvm.org/

USING LLVM FROM RUBY

We’ll be using LLVM Ruby bindings to compile a subset of Awesome to machine

code on the fly. To compile a full language, most parts of the runtime have to be

rewritten to be accessible from inside LLVM.

First, you’ll need to install LLVM and the Ruby bindings. You can find instructions

on ruby-llvm project page. Installing LLVM can take quite some time, make sure

you got yourself a tasty beverage before launching compilation.

Here’s how to use LLVM from Ruby.

1 # Creates a new module to hold the code

2 mod = LLVM::Module.create("awesome")

3 # Creates the main function that will be called

4 main = mod.functions.add("main", [INT, LLVM::Type.pointer(PCHAR)], INT)

5 # Create a block of code to build machine code within

6 builder = LLVM::Builder.create

7 builder.position_at_end(main.basic_blocks.append)

8

9 # Find the function we're calling in the module

10 func = mod.functions.named("puts")

11 # Call the function

12 builder.call(func, builder.global_string_pointer("hello"))

13 # Return

14 builder.ret(LLVM::Int(0))

This is the equivalent of the following C code. In fact, it will generate similar

machine code.

1 int main (int argc, char const *argv[]) {

2 puts("hello");

3 return 0;

4 }

http://github.com/jvoorhis/ruby-llvm

The difference is that with LLVM we can dynamically generate the machine code.

Because of that, we can create machine code from Awesome code.

COMPIL ING AWESOME TO MACHINE CODE

To compile Awesome to machine code, we’ll create a Compiler class that will

encapsulate the logic of calling LLVM to generate the byte-code. Then, we’ll

extend the nodes created by the parser to make them use the compiler.

compiler.rb1 require "rubygems"

2 require "parser"

3 require "nodes"

4

5 require 'llvm/core'

6 require 'llvm/execution_engine'

7 require 'llvm/transforms/scalar'

8 require 'llvm/transforms/ipo'

9

10 LLVM.init_x86

11

12 # Compiler is used in a similar way as the runtime. But, instead of executing code, it

13 # will generate LLVM byte-code for later execution.

14 class Compiler

15

16 # Initialize LLVM types

17 PCHAR = LLVM::Type.pointer(LLVM::Int8) # equivalent to *char in C

18 INT = LLVM::Int # equivalent to int in C

19

20 attr_reader :locals

21

22 def initialize(mod=nil, function=nil)

23 # Create the LLVM module in which to store the code

24 @module = mod || LLVM::Module.create("awesome")

25

26 # To track local names during compilation

27 @locals = {}

28

29 # Function in which the code will be put

30 @function = function ||

31 # By default we create a main function as it's the standard entry point

32 @module.functions.named("main") ||

33 @module.functions.add("main", [INT, LLVM::Type.pointer(PCHAR)], INT)

34

35 # Create an LLVM byte-code builder

36 @builder = LLVM::Builder.create

37 @builder.position_at_end(@function.basic_blocks.append)

38

39 @engine = LLVM::ExecutionEngine.create_jit_compiler(@module)

40 end

41

42 # Initial header to initialize the module.

43 def preamble

44 define_external_functions

45 end

46

47 def finish

48 @builder.ret(LLVM::Int(0))

49 end

50

51 # Create a new string.

52 def new_string(value)

53 @builder.global_string_pointer(value)

54 end

55

56 # Create a new number.

57 def new_number(value)

58 LLVM::Int(value)

59 end

60

61 # Call a function.

62 def call(func, args=[])

63 f = @module.functions.named(func)

64 @builder.call(f, *args)

65 end

66

67 # Assign a local variable

68 def assign(name, value)

69 # Allocate the memory and returns a pointer to it

70 ptr = @builder.alloca(value.type)

71 # Store the value insite the pointer

72 @builder.store(value, ptr)

73 # Keep track of the pointer so the compiler can find it back name later.

74 @locals[name] = ptr

75 end

76

77 # Load the value of a local variable.

78 def load(name)

79 @builder.load(@locals[name])

80 end

81

82 # Defines a function.

83 def function(name)

84 func = @module.functions.add(name, [], INT)

85 generator = Compiler.new(@module, func)

86 yield generator

87 generator.finish

88 end

89

90 # Optimize the generated LLVM byte-code.

91 def optimize

92 @module.verify!

93 pass_manager = LLVM::PassManager.new(@engine)

94 pass_manager.simplifycfg! # Simplify the CFG

95 pass_manager.mem2reg! # Promote Memory to Register

96 pass_manager.gdce! # Dead Global Elimination

97 end

98

99 # JIT compile and run the LLVM byte-code.

100 def run

101 @engine.run_function(@function, 0, 0)

102 end

103

104 def dump

105 @module.dump

106 end

107

108 private

109 def define_external_functions

110 fun = @module.functions.add("printf", [LLVM::Type.pointer(PCHAR)], INT, { :varargs => true })

111 fun.linkage = :external

112

113 fun = @module.functions.add("puts", [PCHAR], INT)

114 fun.linkage = :external

115

116 fun = @module.functions.add("read", [INT, PCHAR, INT], INT)

117 fun.linkage = :external

118

119 fun = @module.functions.add("exit", [INT], INT)

120 fun.linkage = :external

121 end

122 end

123

124 # Reopen class supported by the compiler to implement how each node is compiled

125 # (compile method).

126

127 class Nodes

128 def compile(compiler)

129 nodes.map { |node| node.compile(compiler) }.last

130 end

131 end

132

133 class NumberNode

134 def compile(compiler)

135 compiler.new_number(value)

136 end

137 end

138

139 class StringNode

140 def compile(compiler)

141 compiler.new_string(value)

142 end

143 end

144

145 class CallNode

146 def compile(compiler)

147 raise "Receiver not supported for compilation" if receiver

148

149 # Local variable access

150 if receiver.nil? && arguments.empty? && compiler.locals[method]

151 compiler.load(method)

152

153 # Method call

154 else

155 compiled_arguments = arguments.map { |arg| arg.compile(compiler) }

156 compiler.call(method, compiled_arguments)

157 end

158 end

159 end

160

161 class SetLocalNode

162 def compile(compiler)

163 compiler.assign(name, value.compile(compiler))

164 end

165 end

166

167 class DefNode

168 def compile(compiler)

169 raise "Parameters not supported for compilation" if !params.empty?

170 compiler.function(name) do |function|

171 body.compile(function)

172 end

173 end

174 end

With the compiler integrated with the nodes, we can now compile a simple

program.

test/compiler_test.rb1 code = <<-CODE

2 def say_it:

3 x = "This is compiled!"

4 puts(x)

5 say_it

6 CODE

7

8 # Parse the code

9 node = Parser.new.parse(code)

10

11 # Compile it

12 compiler = Compiler.new

13 compiler.preamble

14 node.compile(compiler)

15 compiler.finish

16

17 # Uncomment to output LLVM byte-code

18 # compiler.dump

19

20 # Optimize the LLVM byte-code

21 compiler.optimize

22

23 # JIT compile & execute

24 compiler.run

Remember that the compiler only supports a subset of our Awesome language. For

example, object-oriented programming is not supported. To implemented this, the

runtime and structures used to store the classes and objects have to be loaded from

inside the LLVM module. You can do this by compiling your runtime to LLVM

byte-code, either writing it in C and using the C-to-LLVM compiler shipped with

LLVM or by writing your runtime in a subset of your language that can be compiled

to LLVM byte-code.

VIRTUAL MACHINE

If you’re serious about speed and are ready to implement your language in C/C++,

you need to introduce a VM (short for Virtual Machine) in your design.

When running your language on a VM you have to compile your AST nodes to

byte-code. Despite adding an extra step, execution of the code is faster because

byte-code format is closer to machine code than an AST. Figure 4 shows how you

can introduce a byte-code compiler into your language design.

Figure 4

Look at tinypy and tinyrb in the Interesting Languages section for complete

examples of small VM-based languages.

BYTE -CODE

The purpose of a VM is to bring the code as close to machine code as possible but

without being too far from the original language making it hard (slow) to compile.

An ideal byte-code is fast to compile from the source language and fast to execute

while being very compact in memory.

The byte-code of a program consists of instructions. Each instruction starts with an

opcode, specifying what this instruction does, followed by operands, which are the

arguments of the instructions.

Figure 5

Most VMs share a similar set of instructions. Common ones include, getlocal to

push a local variable value to the stack, putstring to push a string to the stack,

pop to remove an item from the stack, dup to duplicate it, etc. You can see Ruby

1.9 (YARV) instruction set at lifegoo.pluskid.org. And the JVM instruction set at

xs4all.nl.

TYPES OF VM

Stack-based virtual machines are most common and simpler to implement. Python,

Ruby 1.9 and the JVM are all stack-based VMs. The execution of those is based

around a stack in which values are stored to be passed around to instructions.

Instructions will often pop values from the stack, modify it and push the result back

to the stack.

http://lifegoo.pluskid.org/upload/doc/yarv/yarv_iset.html
http://www.xs4all.nl/~mpdeboer/scriptie/node14.html

Register-based VMs are becoming increasingly popular. Lua is register-based. They

are closer to how a real machine work but produce bigger instructions with lots of

operands but often fewer total instructions then a stack-based VM.

PROTOTYPING A VM IN RUBY

For the sake of understanding the inner working of a VM, we’ll look at a prototype

written in Ruby. It should be noted that, never in any case, a real VM should be

written in a high level languages like Ruby. It defeats the purpose of bringing the

code closer to the machine. Each line of code in a Virtual Machine is optimized to

require as little machine instructions as possible to execute, high level language do

not provide that control but C and C++ do.

vm/vm.rb1 # Bytecode

2 PUSH = 0

3 ADD = 1

4 PRINT = 2

5 RETURN = 3

6

7 class VM

8 def run(bytecode)

9 # Stack to pass value between instructions.

10 stack = []

11 # Instruction Pointer, index of current instruction being executed in bytecode.

12 ip = 0

13

14 while true

15 case bytecode[ip]

16 when PUSH

17 stack.unshift bytecode[ip+=1]

18 when ADD

19 stack.unshift stack.pop + stack.pop

20 when PRINT

21 puts stack.pop

22 when RETURN

23 return

24 end

25

26 # Continue to next intruction

27 ip += 1

28 end

29 end

30 end

31

32 VM.new.run [

33 # Here is the bytecode of our program, the equivalent of: print 1 + 2.

34 # Opcode, Operand # Status of the stack after execution of the instruction.

35 PUSH, 1, # stack = [1]

36 PUSH, 2, # stack = [2, 1]

37 ADD, # stack = [3]

38 PRINT, # stack = []

39 RETURN

40]

As you can see, a Virtual Machine is simply a loop and a switch-case.

The byte-code that we execute is the equivalent of print 1 + 2. To achieve this, we

push 1 and 2 to the stack and execute the ADD instruction which push the result of

summing everything on the stack.

Look in the code/vm directory for the full language using this VM.

GOING FURTHER

Building your first language is fun, but it’s only the tip of the iceberg. There’s so

much to discover in that field. Here are a few things I’ve been playing with in the

last years.

HOMOICONICITY

That’s the word you want to ostentatiously throw in a geek conversation. While it

sounds obscure and complex, it means that the primary representation of your

program (the AST) is accessible as a data structure inside the runtime of the

language. You can inspect and modify the program as it’s running. This gives you

godlike powers.

Look in the Interesting Languages section of the References chapter for the Io

language and in the Appendix: Mio, a minimalist homoiconic language of this

book for a sample homoiconic language implementing if and boolean logic in

itself.

SELF -HOSTING

A self-hosting, or metacircular interpreter aims to implement the interpreter in the

target language. This is very tedious since you need to implement an interpreter

first to run the language, which causes a circular dependency between the two.

CoffeeScript is a little language that compiles into JavaScript. The CoffeeScript

compiler is itself written in CoffeeScript.

Rubinius is a Ruby implementation that aims to be self-hosted in the future. At the

moment, some parts of the runtime are still not written in Ruby.

http://jashkenas.github.com/coffee-script/
http://jashkenas.github.com/coffee-script/documentation/docs/grammar.html
http://rubini.us/

PyPy is trying to achieve this in a much simpler way: by using a restrictive subset of

the Python language to implement Python itself.

WHAT’S MISSING?

If you’re serious about building a real language (real as in production-ready), then

you should consider implementing it in a faster and more robust environment.

Ruby is nice for quick prototyping but horrible for language implementation.

The two obvious choices are Java on the JVM, which gives you a garbage collector

and a nice collection of portable libraries, or C/C++, which gives you total control

over what you’re doing.

Now get out there and make your own awesome language!

http://codespeak.net/pypy/

RESOURCES

BOOKS & PAPERS

Language Implementation Patterns, by Terence Parr, from The Programmatic

Programmers.

Smalltalk-80: The Language and its Implementation by Adele Goldberg and al.,

published by Addison-Wesley, May 1983.

A No-Frills Introduction to Lua 5.1 VM Instructions, by Kein-Hong Man.

The Implementation of Lua 5.0, by Roberto Ierusalimschy et al.

EVENTS

OOPSLA, The International Conference on Object Oriented Programming,

Systems, Languages and Applications, is a gathering of many programming

language authors.

The JVM Language Summit is an open technical collaboration among language

designers, compiler writers, tool builders, runtime engineers, and VM architects for

sharing experiences as creators of programming languages for the JVM.

FORUMS AND BLOGS

Lambda the Ultimate, The Programming Languages Weblog, discuss about new

trends, research papers and various programming language topics.

INTEREST ING LANGUAGES

Io:

http://pragprog.com/titles/tpdsl/language-implementation-patterns
http://www.amazon.com/Smalltalk-80-Language-Implementation-Adele-Goldberg/dp/0201113716
http://luaforge.net/docman/view…/ANoFrillsIntroToLua51VMInstructions.pdf
http://www.lua.org/doc/jucs05.pdf
http://www.oopsla.org/oopsla2009/
http://openjdk.java.net/projects/mlvm/jvmlangsummit/
http://lambda-the-ultimate.org/
http://iolanguage.com/

Io is a small, prototype-based programming language. The ideas in Io are

mostly inspired by Smalltalk (all values are objects, all messages are

dynamic), Self (prototype-based), NewtonScript (differential inheritance),

Act1 (actors and futures for concurrency), LISP (code is a runtime

inspectable/modifiable tree) and Lua (small, embeddable).

A few things to note about Io. It doesn’t have any parser, only a lexer that converts

the code to Message objects. This language is Homoiconic.

Factor is a concatenative programming language where references to dynamically-

typed values are passed between words (functions) on a stack.

Lua:

Lua is a powerful, fast, lightweight, embeddable scripting language.

Lua combines simple procedural syntax with powerful data description

constructs based on associative arrays and extensible semantics. Lua is

dynamically typed, runs by interpreting bytecode for a register-based virtual

machine, and has automatic memory management with incremental garbage

collection, making it ideal for configuration, scripting, and rapid prototyping.

tinypy and tinyrb are both subsets of more complete languages (Python and Ruby

respectively) running on Virtual Machines inspired by Lua. Their code is only a few

thousand lines long. If you want to introduce a VM in your language design, those

are good starting points.

Need inspiration for your awesome language? Check out Wikipedia’s programming

lists: (List of programming languages)[http://en.wikipedia.org/wiki/

List_of_programming_languages], (Esoteric programming

languages)[http://en.wikipedia.org/wiki/Esoteric_programming_languagee]

http://factorcode.org/
http://www.lua.org/
http://www.tinypy.org/
http://code.macournoyer.com/tinyrb/

In addition to the languages we know and use every day (C, C++, Perl, Java, etc.),

you’ll find many lesser-known languages, many of which are very interesting.

You’ll even find some esoteric languages such as Piet, a language that is

programmed using images that look like abstract art. You’ll also find some

languages that are voluntarily impossible to use like Malbolge and BrainFuck and

some amusing languages like LOLCODE, whose sole purpose is to be funny.

While some of these languages aren’t practical, they can widen your horizons, and

alter your conception of what constitutes a computer language. If you’re going to

design your own language, that can only be a good thing.

http://en.wikipedia.org/wiki/Piet_%28programming_language%29
http://en.wikipedia.org/wiki/Malbolge
http://en.wikipedia.org/wiki/Brainfuck
http://en.wikipedia.org/wiki/LOLCODE

SOLUTIONS TO DO IT YOURSELF

SOLUTIONS TO DO IT YOURSELF I

a. Modify the lexer to parse: while condition: ... control

structures.

Simply add while to the KEYWORD array on line 2.

1 KEYWORDS = ["def", "class", "if", "else", "true", "false", "nil", "while"]

b. Modify the lexer to delimit blocks with { ... } instead of indentation.

Remove all indentation logic and add an elsif to parse line breaks.

bracket_lexer.rb1 class BracketLexer

2 KEYWORDS = ["def", "class", "if", "else", "true", "false", "nil"]

3

4 def tokenize(code)

5 code.chomp!

6 i = 0

7 tokens = []

8

9 while i < code.size

10 chunk = code[i..-1]

11

12 if identifier = chunk[/\A([a-z]\w*)/, 1]

13 if KEYWORDS.include?(identifier)

14 tokens << [identifier.upcase.to_sym, identifier]

15 else

16 tokens << [:IDENTIFIER, identifier]

17 end

18 i += identifier.size

19

20 elsif constant = chunk[/\A([A-Z]\w*)/, 1]

21 tokens << [:CONSTANT, constant]

22 i += constant.size

23

24 elsif number = chunk[/\A([0-9]+)/, 1]

25 tokens << [:NUMBER, number.to_i]

26 i += number.size

27

28 elsif string = chunk[/\A"(.*?)"/, 1]

29 tokens << [:STRING, string]

30 i += string.size + 2

31

32 ######

33 # All indentation magic code was removed and only this elsif was added.

34 elsif chunk.match(/\A\n+/)

35 tokens << [:NEWLINE, "\n"]

36 i += 1

37 ######

38

39 elsif chunk.match(/\A /)

40 i += 1

41

42 else

43 value = chunk[0,1]

44 tokens << [value, value]

45 i += 1

46

47 end

48

49 end

50

51 tokens

52 end

53 end

SOLUTIONS TO DO IT YOURSELF I I

a. Add a rule in the grammar to parse while blocks.

This rule is very similar to If.

1 # At the top add:

2 token WHILE

3

4 # ...

5

6 Expression:

7 # ...

8 | While

9 ;

10

11 # ...

12

13 While:

14 WHILE Expression Block { result = WhileNode.new(val[1], val[2]) }

15 ;

And in the nodes.rb file, you will need to create the class:

1 class WhileNode < Struct.new(:condition, :body); end

b. Add a grammar rule to handle the ! unary operators.

Similar to the binary operator. Calling !x is like calling x.!.

1 Operator:

2 # ...

3 | '!' Expression { result = CallNode.new(val[1], val[0], []) }

4 ;

SOLUTIONS TO DO IT YOURSELF I I I

a. Implement inheritance by adding a superclass to each Awesome class.

1 class AwesomeClass < AwesomeObject

2 # ...

3

4 def initialize(superclass=nil)

5 @runtime_methods = {}

6 @runtime_superclass = superclass

7 # ...

8 end

9

10 def lookup(method_name)

11 method = @runtime_methods[method_name]

12 unless method

13 if @runtime_superclass

14 return @runtime_superclass.lookup(method_name)

15 else

16 raise "Method not found: #{method_name}"

17 end

18 end

19 method

20 end

21 end

22

23 # ...

24

25 Runtime["Number"] = AwesomeClass.new(Runtime["Object"])

b. Add the method to handle x + 2.

1 Runtime["Number"].runtime_methods["+"] = proc do |receiver, arguments|

2 result = receiver.ruby_value + arguments.first.ruby_value

3 Runtime["Number"].new_with_value(result)

4 end

SOLUTIONS TO DO IT YOURSELF IV

a. Implement the WhileNode.

while is very similar to if.

1 class WhileNode

2 def eval(context)

3 while @condition.eval(context).ruby_value

4 @body.eval(context)

5 end

6 end

7 end

APPENDIX: MIO, A MINIMALIST
HOMOICONIC LANGUAGE

HOMOICOWHAT?

Homoiconicity is a hard concept to grasp. The best way to understand it fully is to

implement it. That is the purpose of this section. It should also give you glimpse at

an unconventional language.

We’ll build a tiny language called Mio (for mini-Io). It is derived from the Io

language. The central component of our language will be messages. Messages are a

data type in Mio and also how programs are represented and parsed, thus its

homoiconicity. We’ll again implement the core of our language in Ruby, but this

one will take less than 200 lines of code.

MESSAGES ALL THE WAY DOWN

Like in Awesome, everything is an object in Mio. Additionally, a program being

method calls and literals, is simply a series of messages. And messages are

separated by spaces not dots, which makes our language looks a lot like plain

english.

1 object method1 method2(argument)

Is the semantic equivalent of the following Ruby code:

1 object.method1.method2(argument)

http://iolanguage.com/
http://iolanguage.com/

THE RUNTIME

Unlike Awesome but like Javascript, Mio is prototype-based. Thus, it doesn’t have

any classes or instances. We create new objects by cloning existing ones. Objects

don’t have classes, but prototypes (protos), their parent objects.

Mio objects are like dictionaries or hashes (again, much like Javascript). They

contain slots in which we can store methods and values such as strings, numbers

and other objects.

mio/object.rb1 module Mio

2 class Object

3 attr_accessor :slots, :protos, :value

4

5 def initialize(proto=nil, value=nil)

6 @protos = [proto].compact

7 @value = value

8 @slots = {}

9 end

10

11 # Lookup a slot in the current object and protos.

12 def [](name)

13 return @slots[name] if @slots.key?(name)

14 message = nil

15 @protos.each { |proto| return message if message = proto[name] }

16 raise Mio::Error, "Missing slot: #{name.inspect}"

17 end

18

19 # Set a slot

20 def []=(name, message)

21 @slots[name] = message

22 end

23

24 # The call method is used to eval an object.

25 # By default objects eval to themselves.

26 def call(*)

27 self

28 end

29

30 def clone(val=nil)

31 val ||= @value && @value.dup rescue TypeError

32 Object.new(self, val)

33 end

34 end

35 end

Mio programs are a chain of messages. Each message being a token. The following

piece of code:

1 "hello" print

2 1 to_s print

is parsed as the following chain of messages:

1 Message.new('"hello"',

2 Message.new("print",

3 Message.new("\n",

4 Message.new("1",

5 Message.new("to_s",

6 Message.new("print"))))))

Notice line breaks (and dots) are also messages. When executed, they simply reset

the receiver of the message.

1 self print # <= Line break resets the receiver to self

2 self print # So now it looks as if we're starting a new expression

3 # with the same receiver as before.

This results in the same behaviour as in languages such as Awesome, where each

line is an expression.

The unification of all types of expression into one data type makes our language

extremely easy to parse (see parse_all method in the code bellow). Messages

are much like tokens, thus our parsing code will be similar to the one of our lexer

in Awesome. We don’t even need a grammar with parsing rules!

mio/message.rb1 module Mio

2 # Message is a chain of tokens produced when parsing.

3 # 1 print.

4 # is parsed to:

5 # Message.new("1",

6 # Message.new("print"))

7 # You can then +call+ the top level Message to eval it.

8 class Message < Object

9 attr_accessor :next, :name, :args, :line, :cached_value

10

11 def initialize(name, line)

12 @name = name

13 @args = []

14 @line = line

15

16 # Literals are static values, we can eval them right

17 # away and cache the value.

18 @cached_value = case @name

19 when /^\d+/

20 Lobby["Number"].clone(@name.to_i)

21 when /^"(.*)"$/

22 Lobby["String"].clone($1)

23 end

24

25 @terminator = [".", "\n"].include?(@name)

26

27 super(Lobby["Message"])

28 end

29

30 # Call (eval) the message on the +receiver+.

31 def call(receiver, context=receiver, *args)

32 if @terminator

33 # reset receiver to object at begining of the chain.

34 # eg.:

35 # hello there. yo

36 # ^ ^__ "." resets back to the receiver here

37 # __/

38 value = context

39 elsif @cached_value

40 # We already got the value

41 value = @cached_value

42 else

43 # Lookup the slot on the receiver

44 slot = receiver[name]

45

46 # Eval the object in the slot

47 value = slot.call(receiver, context, *@args)

48 end

49

50 # Pass to next message if some

51 if @next

52 @next.call(value, context)

53 else

54 value

55 end

56 rescue Mio::Error => e

57 # Keep track of the message that caused the error to output

58 # line number and such.

59 e.current_message ||= self

60 raise

61 end

62

63 def to_s(level=0)

64 s = " " * level

65 s << "<Message @name=#{@name}"

66 s << ", @args=" + @args.inspect unless @args.empty?

67 s << ", @next=\n" + @next.to_s(level + 1) if @next

68 s + ">"

69 end

70

71 # Parse a string into a chain of messages

72 def self.parse(code)

73 parse_all(code, 1).last

74 end

75

76 private

77 def self.parse_all(code, line)

78 code = code.strip

79 i = 0

80 message = nil

81 messages = []

82

83 # Marrrvelous parsing code!

84 while i < code.size

85 case code[i..-1]

86 when /\A("[^"]*")/, # string

87 /\A(\d+)/, # number

88 /\A(\.)+/, # dot

89 /\A(\n)+/, # line break

90 /\A(\w+)/ # name

91 m = Message.new($1, line)

92 if messages.empty?

93 messages << m

94 else

95 message.next = m

96 end

97 line += $1.count("\n")

98 message = m

99 i += $1.size - 1

100 when /\A(\(\s*)/ # arguments

101 start = i + $1.size

102 level = 1

103 while level > 0 && i < code.size

104 i += 1

105 level += 1 if code[i] == ?\(

106 level -= 1 if code[i] == ?\)

107 end

108 line += $1.count("\n")

109 code_chunk = code[start..i-1]

110 message.args = parse_all(code_chunk, line)

111 line += code_chunk.count("\n")

112 when /\A,(\s*)/

113 line += $1.count("\n")

114 messages.concat parse_all(code[i+1..-1], line)

115 break

116 when /\A(\s+)/, # ignore whitespace

117 /\A(#.*$)/ # ignore comments

118 line += $1.count("\n")

119 i += $1.size - 1

120 else

121 raise "Unknown char #{code[i].inspect} at line #{line}"

122 end

123 i += 1

124 end

125 messages

126 end

127 end

128 end

The only missing part of our language at this point is a method. This will allow us

to store a block of code and execute it later in its original context and on the

receiver.

But, there will be one special thing about our method arguments. They won’t be

implicitly evaluated. For example, calling method(x) won’t evaluate x when

calling the method, it will pass it as a message. This is called lazy evaluation. It will

allow us to implement control structure right from inside our language. When an

argument needs to be evaluated, we do so explicitly by calling the method

eval_arg(arg_index).

mio/method.rb1 module Mio

2 class Method < Object

3 def initialize(context, message)

4 @definition_context = context

5 @message = message

6 super(Lobby["Method"])

7 end

8

9 def call(receiver, calling_context, *args)

10 # Woo... lots of contexts here... lets clear that up:

11 # @definition_context: where the method was defined

12 # calling_context: where the method was called

13 # method_context: where the method body (message) is executing

14 method_context = @definition_context.clone

15 method_context["self"] = receiver

16 method_context["arguments"] = Lobby["List"].clone(args)

17 # Note: no argument is evaluated here. Our little language only has lazy argument

18 # evaluation. If you pass args to a method, you have to eval them explicitly,

19 # using the following method.

20 method_context["eval_arg"] = proc do |receiver, context, at|

21 (args[at.call(context).value] || Lobby["nil"]).call(calling_context)

22 end

23 @message.call(method_context)

24 end

25 end

26 end

Now that we have all the objects in place we’re ready to bootstrap our runtime.

Our Awesome language had a Context object, which served as the environment

of execution. In Mio, we’ll simply use an object as the context of evaluation. Local

variables will be stored in the slots of that object. The root object is called the

Lobby. Because … it’s where all the objects meet, in the lobby. (Actually, the term

is taken from Io.)

mio/bootstrap.rb1 module Mio

2 # Bootstrap

3 object = Object.new

4

5 object["clone"] = proc { |receiver, context| receiver.clone }

6 object["set_slot"] = proc do |receiver, context, name, value|

7 receiver[name.call(context).value] = value.call(context)

8 end

9 object["print"] = proc do |receiver, context|

10 puts receiver.value

11 Lobby["nil"]

12 end

13

14 # Introducing the Lobby! Where all the fantastic objects live and also the root context

15 # of evaluation.

16 Lobby = object.clone

17

18 Lobby["Lobby"] = Lobby

19 Lobby["Object"] = object

20 Lobby["nil"] = object.clone(nil)

21 Lobby["true"] = object.clone(true)

22 Lobby["false"] = object.clone(false)

23 Lobby["Number"] = object.clone(0)

24 Lobby["String"] = object.clone("")

25 Lobby["List"] = object.clone([])

26 Lobby["Message"] = object.clone

27 Lobby["Method"] = object.clone

28

29 # The method we'll use to define methods.

30 Lobby["method"] = proc { |receiver, context, message| Method.new(context, message) }

31 end

IMPLEMENTING MIO IN MIO

This is all we need to start implementing our language in itself.

First, here’s what we’re already able to do: cloning objects, setting and getting slot

values.

test/mio/oop.mio1 # Create a new object, by cloning the master Object

2 set_slot("dude", Object clone)

3 # Set a slot on it

4 dude set_slot("name", "Bob")

5 # Call the slot to retrieve it's value

6 dude name print

7 # => Bob

8

9 # Define a method

10 dude set_slot("say_name", method(

11 # Print unevaluated arguments (messages)

12 arguments print

13 # => <Message @name="hello...">

14

15 # Eval the first argument

16 eval_arg(0) print

17 # => hello...

18

19 # Access the receiver via `self`

20 self name print

21 # => Bob

22))

23

24 # Call that method

25 dude say_name("hello...")

Here’s where the lazy argument evaluation comes in. We’re able to implement the

and and or operators from inside our language.

mio/boolean.mio1 # An object is always truish

2

3 Object set_slot("and", method(

4 eval_arg(0)

5))

6 Object set_slot("or", method(

7 self

8))

9

10 # ... except nil and false which are false

11

12 nil set_slot("and", nil)

13 nil set_slot("or", method(

14 eval_arg(0)

15))

16

17 false set_slot("and", false)

18 false set_slot("or", method(

19 eval_arg(0)

20))

test/mio/boolean.mio1 "yo" or("hi") print

2 # => yo

3

4 nil or("hi") print

5 # => hi

6

7 "yo" and("hi") print

8 # => hi

9

10 1 and(2 or(3)) print

11 # => 2

Using those two operators, we can implement if.

mio/if.mio1 # Implement if using boolean logic

2

3 set_slot("if", method(

4 # eval condition

5 set_slot("condition", eval_arg(0))

6 condition and(# if true

7 eval_arg(1)

8)

9 condition or(# if false (else)

10 eval_arg(2)

11)

12))

And now… holy magical pony!

test/mio/if.mio1 if(true,

2 "condition is true" print,

3 # else

4 "nope" print

5)

6 # => condition is true

7

8 if(false,

9 "nope" print,

10 # else

11 "condition is false" print

12)

13 # => condition is false

if defined from inside our language!

BUT IT ’S UGLY

All right… it’s working, but the syntax is not as nice as Awesome. An addition

would be written as: 1 +(2) for example, and we need to use set_slot for

assignment, nothing to impress your friends and foes.

To solve this problem, we can again borrow from Io and implement operator

shuffling. This simply means reordering operators. During the parsing phase, we

would turn 1 + 2 into 1 +(2). Same goes for ternary operators such as

assignment. x = 1 would be rewritten as =(x, 1). This introduces syntactic

sugar into our language without impacting its homoiconicity and awesomness.

You can find all the source code for Mio under the code/mio directory and run its

unit tests with the command: ruby -Itest test/mio_test.rb.

FAREWELL!

That is all for now. I hope you enjoyed my book!

If you find an error or have a comment or suggestion, please send me an email at

macournoyer@gmail.com.

If you end up creating a programming language let me know, I’d love to see it!

Thanks for reading.

- Marc

mailto:macournoyer@gmail.com

	Table of Content
	Introduction
	Summary
	About The Author
	Before We Begin

	Overview
	The Four Parts of a Language
	Figure 1

	Meet Awesome: Our Toy Language

	Lexer
	Lex (Flex)
	Ragel
	Python Style Indentation For Awesome
	lexer.rb
	test/lexer_test.rb

	Do It Yourself I

	Parser
	Figure 2
	Bison (Yacc)
	Lemon
	ANTLR
	PEGs
	Operator Precedence
	Connecting The Lexer and Parser in Awesome
	grammar.y
	test/parser_test.rb

	Do It Yourself II

	Runtime Model
	Procedural
	Class-based
	Prototype-based
	Functional
	Our Awesome Runtime
	runtime/object.rb
	runtime/class.rb
	runtime/method.rb
	runtime/context.rb
	runtime/bootstrap.rb
	test/runtime_test.rb

	Do It Yourself III

	Interpreter
	Figure 3
	interpreter.rb
	test/interpreter_test.rb
	awesome
	Do It Yourself IV

	Compilation
	Using LLVM from Ruby
	Compiling Awesome to Machine Code
	compiler.rb
	test/compiler_test.rb

	Virtual Machine
	Figure 4
	Byte-code
	Figure 5

	Types of VM
	Prototyping a VM in Ruby
	vm/vm.rb

	Going Further
	Homoiconicity
	Self-Hosting
	What’s Missing?

	Resources
	Books & Papers
	Events
	Forums and Blogs
	Interesting Languages

	Solutions to Do It Yourself
	Solutions to Do It Yourself I
	a. Modify the lexer to parse: while condition: ... control structures.
	b. Modify the lexer to delimit blocks with { ... } instead of indentation.
	bracket_lexer.rb

	Solutions to Do It Yourself II
	a. Add a rule in the grammar to parse while blocks.
	b. Add a grammar rule to handle the ! unary operators.

	Solutions to Do It Yourself III
	a. Implement inheritance by adding a superclass to each Awesome class.
	b. Add the method to handle x + 2.

	Solutions to Do It Yourself IV
	a. Implement the WhileNode.

	Appendix: Mio, a minimalist homoiconic language
	Homoicowhat?
	Messages all the way down
	The Runtime
	mio/object.rb
	mio/message.rb
	mio/method.rb
	mio/bootstrap.rb

	Implementing Mio in Mio
	test/mio/oop.mio
	mio/boolean.mio
	test/mio/boolean.mio
	mio/if.mio
	test/mio/if.mio

	But it’s ugly

	Farewell!

